If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9a^2-18a-62=0
a = 9; b = -18; c = -62;
Δ = b2-4ac
Δ = -182-4·9·(-62)
Δ = 2556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2556}=\sqrt{36*71}=\sqrt{36}*\sqrt{71}=6\sqrt{71}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{71}}{2*9}=\frac{18-6\sqrt{71}}{18} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{71}}{2*9}=\frac{18+6\sqrt{71}}{18} $
| y=36+72+27 | | 20+3y-4=10y-9-2y | | 8r^2+16r-15=0 | | 8v^2-16v-7=0 | | -4x+4.8=-4.8 | | 4x+3x+8=57 | | m^2+20m-17=0 | | –x/4+4.8=-4.8 | | 5x-12=6x+8 | | 3d-5=35 | | 6/v=4/7 | | 7-x(5x+2)=3-x(4-x) | | 8(u-1)=-7u+7 | | |2-5t|+5=17 | | -1/2y-3y=-2-(8-5) | | y^2−6y-4=0 | | 48÷r=12 | | Y=x•x+12x+27 | | 2-(7+2)=3y | | 4x+12=2(×+4)+3 | | 16=4(u-5)-8u | | 32=g5 | | 1/2y-3y=-2-(8-5) | | 7,8(2x-23)-34-(43-4x)=9,7(9,5x+8) | | 6+10x=-30 | | 2(5n+4)=2(6n-6 | | 12x+1+5x-3=117 | | 4x+39=13x-6 | | 3x-5x+15=182 | | 4x+9=13x-603 | | -14x-52=158 | | 4x+9=13x-60 |